Különbségek

A kiválasztott változat és az aktuális verzió közötti különbségek a következők.

Összehasonlító nézet linkje

oktatas:matematika:geometria:transzformaciok:csusztatva_tuekroezes [2019/06/04 13:30] (aktuális)
barnkopf ↷ Page moved from matematika:geometria:transzformaciok:csusztatva_tuekroezes to oktatas:matematika:geometria:transzformaciok:csusztatva_tuekroezes
Sor 1: Sor 1:
 +====== Csúsztatva tükrözés ======
  
 +Más néven **csúszástükrözés**.
 +
 +----
 +**Tétel:** Bármely három, nem feltétlenül különböző //a//, //b//, //c// egyenesre vonatkozó //cba// tükrözésszorzat (valódi vagy nem valódi) csúszástükrözés.
 +
 +**Bizonyítás:​**
 +
 +Ha az egyenesek között van két azonos, úgy
 +  - //a=b// esetén //​c(ba)=c(aa)=cI=c//;​
 +  - //b=c// esetén //​cba=(cb)a=(bb)a=Ia=a//;​
 +  - //a=c// esetében pedig, ha //b*// jelöli a //b// egyenesnek az //a// egyenesre vonatkozó tükörképét,​ úgy //​ba=ab*=cb*//,​ tehát //​cba=c(ba)=c(cb*)=(cc)b*=Ib*=b*//,​ vagyis a most vizsgált esetekben igaz az állítás.
 +
 +A továbbiakban feltesszük,​ hogy az egyenesek különbözőek. Ekkor kölcsönös helyzetüket tekintve vagy
 +  * van közöttük két párhuzamos,​ vagy
 +  * páronként metszik egymást.
 +
 +Az első esetben az egyenesek vagy egymással párhuzamosak,​ vagy közülük pontosan két egyenes párhuzamos (és ezeket metszi a harmadik; 8. ábra).
 +
 +{{ matematika:​geometria:​transzformaciok:​3_tukrozes_1.gif |8. ábra}}
 +
 +A második esetben a három egyenes vagy ugyanabban a pontban, vagy páronként különböző pontokban metszi egymást (9. ábra).
 +
 +{{ matematika:​geometria:​transzformaciok:​3_tukrozes_2.gif |9. ábra}}
 +
 +Először azt fogjuk igazolni, hogy ha a három egyenes egy [[matematika:​geometria:​sugársor]]hoz tartozik (azaz párhuzamosak,​ vagy egy pontra illeszkednek),​ akkor //cba=d//, ahol a //d// egyenest ugyanaz az eltolás (ha //a// és //b// párhuzamosak),​ illetve forgatás (ha //a// és //b// metszők) viszi a //c// egyenesbe, mint az //a// egyenest a //b//-be.
 +E választásra ugyanis //​ba//​=//​cd//​ __első négy tételünk__ miatt, és így
 +//​c(ba)=c(cd)=(cc)d=Id=d//​.
 +
 +
 +A még nem tárgyalt két esetet (két egyenesnek van közös pontja, ami mindhármójuknak nem pontja) egyszerre intézhetjük el.
 +
 +{{ matematika:​geometria:​transzformaciok:​csuszastukrozes.gif|10.ábra}}
 +
 +A //b// egyenest az //a// és a //c// egyenesek legalább egyike metszi, különben három egymással párhuzamos egyenesünk lenne. Feltehetjük,​ hogy az //a// és a //b// egyenesek metszik egymást, mert ellenkező esetben az egymást metsző //b// és //c// egyenesekre szorítkozva ugyanúgy bizonyítanánk,​ mint így.
 +Legyen az //a// és //b// egyenesek közös pontja //M//, és illesszünk az //M//-re egy, a //c// egyenesre merőleges, //f// egyenest (10. ábra). Jelölje //e// azt az //M// ponton áthaladó egyenest , amelyet ugyanaz az //M// pont körüli forgatás visz az //f// egyenesbe, mint az //a// egyenest a //b//-be. E választásra //ba=fe//, vagyis (1) //​c(ba)=(c(fe)=(cf)e//​.
 +
 +Jelölje //N// az egymásra merőleges //c// és //f// egyenesek közös pontját. Mivel a //cf// tükrözésszorzatot bármely két, egymást az //N//-ben metsző, merőleges egyenesre vonatkozó tükrözésszorzattal előállíthatjuk,​ ezért az ilyenek közül válasszuk meg azt a //g//, //h// párt, amelyre //h⊥e// teljesül. Ezzel a választással //cf=hg//, és (1) így alakul:
 +(2) //​c(ba)=(cf)e=(hg)e=h(ge)//​.
 +
 +Az //e// és a //g// egyenesek párhuzamosak,​ hiszen ugyanarra az egyenesre, //h//-ra merőlegesek (és különböznek,​ mivel //e// az //M// pontra, //g// pedig az //M//-től különböző //N// pontra illeszkedik),​ azaz (2) valódi csúszástükrözés.
 +
 +----
 +**Forrás:​**
 +[[http://​matek.fazekas.hu/​portal/​tanitasianyagok/​Pogats_Ferenc/​sik/​siktraf/​siktraf.htm|A szépség matematikája]] (Jakucs Erika és Pogáts Ferenc - Fazekas Mihály Gyakorlóiskola)
oktatas/matematika/geometria/transzformaciok/csusztatva_tuekroezes.txt · Utolsó módosítás: 2019/06/04 13:30 szerkesztette: barnkopf
CC Attribution-Share Alike 4.0 International
Driven by DokuWiki Recent changes RSS feed Valid CSS Valid XHTML 1.0